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Recently, Woo et al. [1] applied the p-version finite element method to the free vibration
analyses of skew Mindlin plates. The method can predict many modes using just one element and
converges faster than that of the h-version methods for the same number of degrees of freedom.
The problem of shear locking is also overcome. But the discerning reader will find that most of
results in Ref. [1] are smaller while others are bigger than those of Liew et al. [2] who used a global
approach named pb-2 Rayleigh–Ritz method for very accurate solutions. In fact, analytic
integration [5] is available for skew plate problems using higher order p-elements. The main
purpose of the paper is to show that numerical integration for highly oscillating shape functions
will soften the stiffness of the element in general and that the monotonic convergence of the
predicted natural frequencies cannot be guaranteed. With analytic integration, the problems are
eliminated.

It is well known that numerical integration errors influence the results computed by p-version
elements and the problem becomes obvious for highly oscillating shape functions such as the
higher order Legendre polynomials. Numerical integration softens the stiffness. This is the reason
that most of results in Ref. [1] are smaller than those of Liew et al. [2]. The numerical quadrature
should only be used to predict several lowest frequencies with few shape functions [3].

Two numerical examples are chosen to substantiate the above viewpoints. Consider a simply
supported square plate as the first example. The exact solutions are available that one can
compare the computed natural frequencies using analytic integration, results of Woo et al. [1] and
Liew et al. [2] with the exact solutions. The second example is the comparison of three methods for
CFFF (clamped–free–free–free) skew plates with different skew angles. Only one p-element with
p-lever=7 are used in all computations. From Table 1, one can see that the thin plate results of
Woo et al. [1] are in good agreement with the exact solutions but the thick plate results are all
smaller than the exact solutions and the results of Liew et al. [2]. The difference between the
results of Woo et al. [1] and the exact solutions [4] is increasing with an increasing number of p-
lever. On the other hand, the analytic p-version finite element is well-behaved when compared
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with the exact solutions whatever the plates are ‘‘thin’’ or ‘‘thick’’. The convergence is always from
above. The same problem can also be observed in Table 2. Two series shape functions are used in
the present solutions with analytic integration. From Table 2, it can be observed that the solutions
using Legendre orthogonal polynomials as shape functions [6] are more accurate than those using
shape functions in Ref. [1]. Most results of Woo et al. [1] are smaller than those of Liew et al. [2].
Though the difference between them is small in the table, it will be increasingly large for modal
frequencies higher than five. Higher order hierarchical Legendre polynomials will make the
element matrices ill-conditioned [5]. To study the ill-conditioning of the element matrices, the
condition number CN of the matrix I00 is plotted in Fig. 1. The coefficients I00

ij ði; j ¼ 1; 2;y; pÞ in
matrix I00 are used in forming the stiffness and mass matrices of the element, and they are defined
by

I00
ij ¼

Z 1

�1

fi fj dx; ð1Þ

where f are the shape functions using Legendre orthogonal polynomials. Ref. [7] gives the
definition of condition number CN:

CN ¼
omax

omin

; ð2Þ

where omin and omin are, respectively, the largest and smallest eigenvalues of the matrix. When the
p-lever ¼ 57; omin and the condition number CN of the matrix are negative, and the high order
polynomials lead to ill-conditioning stiffness and mass matrices.

Analytical integration can easy be obtained for rectangular, skew and trapezoidal p-version
elements [5,8]. These elements are enclosed by two pairs of opposite faces in which at least one
pair parallel to each other. Then the two planar co-ordinates in the Jacobian of the elemental area
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Table 1

Frequency parameters l ¼ ðob2=p2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for simply supported square plates

h=b Mode Methods

Present Woo [1] Liew [2] Exacta Exactb

0.001 1 2.0000 1.9999 2.0000 2.0000 2.0000

2 5.0144 4.9999 5.0000 5.0000 5.0000

3 5.0144 5.0000 5.0000 5.0000 5.0000

4 8.0211 7.9999 8.0000 8.0000 7.9999

5 10.144 10.000 9.9999 10.000 9.9998

0.2 1 1.7679(0.00) 1.7637(�0.04) 1.7679 1.7679

2 3.8678(0.06) 3.8497(�0.41) 3.8656 3.8656

3 3.8678(0.06) 3.8497(�0.41) 3.8656 3.8656

4 5.5911(0.06) 5.4989(�1.59) 5.5879 5.5879

5 6.6505(0.76) 6.5681(�0.49) 6.6006 6.6006

ða=b ¼ 1:0; k ¼ 0:83333; n ¼ 0:3; b ¼ 0�; figures in brackets are percentage errors).
aKirchhoff thin plate theory [4].
bMindlin thick plate theory [4].
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Table 2

Frequency parameters l ¼ ðob2=p2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for CFFF skew plates

b Methods Modes

1 2 3 4 5

0� Presenta 0.3384 0.7452 1.7807 2.2767 2.4234
Presentb 0.3384 0.7447 1.7807 2.2768 2.4209
Woo [1] 0.3383 0.7432 1.7797 2.2712 2.4097
Liew [2] 0.3382 0.7437 1.7779 2.2741 2.4163

15� Presenta 0.3482 0.7601 1.8331 2.1923 2.6369
Presentb 0.3482 0.7597 1.8330 2.1916 2.6355
Woo [1] 0.3479 0.7579 1.8309 2.1863 2.6242
Liew [2] 0.3479 0.7588 1.8299 2.1886 2.6309

30� Presenta 0.3776 0.8175 1.9825 2.1661 3.1048
Presentb 0.3774 0.8171 1.9818 2.1656 3.1033
Woo [1] 0.3768 0.8146 1.9752 2.1606 3.0925
Liew [2] 0.3768 0.8161 1.9772 2.1627 3.0974

45� Presenta 0.4246 0.9676 2.1160 2.3915 3.6922
Presentb 0.4241 0.9671 2.1136 2.3911 3.6870
Woo [1] 0.4225 0.9644 2.1001 2.3855 3.6684
Liew [2] 0.4226 0.9650 2.1059 2.3869 3.6789

60� Presenta 0.4831 1.3477 2.2651 2.9529 4.1954
Presentb 0.4816 1.3449 2.2561 2.9500 4.1755
Woo [1] 0.4791 1.3415 2.2427 2.9414 4.1418
Liew [2] 0.4781 1.3370 2.2387 2.9411 4.1599

ða=b ¼ 1:0; h=b ¼ 0:2; k ¼ 0:83333; n ¼ 0:3Þ:
aUsing shape functions from Ref. [1].
bUsing shape functions from Ref. [6].
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Fig. 1. Condition number of matrix I00:
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are uncoupled and can be integrated independently. Unfortunately, the skew elements in Ref. [1]
cannot be used in a general finite element analysis. But one can always break a triangle into three
trapezoids by drawing three lines parallel to the edges from any point inside the triangle. So the
range of application of trapezoidal elements is the same as that of the triangle elements. Table 3
presents the first five natural frequencies for an equilateral triangular plate (see Fig. 2) with
different thickness and compared with those of Ritz method [9]. The same p-lever ¼ 7 is used in
the computation. The computed results by three trapezoidal elements using Legendre orthogonal
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Table 3

Frequency parameters l ¼ ðob2=ð2pÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for CFF equilateral triangular plates

h=b Methods Modes

1 2 3 4 5 6

0.001 Present 1.420 5.585 6.125 14.26 14.82 17.16

Ref. [9] 1.420 5.585 6.125 14.26 14.82 17.15

0.05 Present 1.404 5.387 5.929 13.50 13.86 15.99

Ref. [9] 1.404 5.387 5.929 13.50 13.86 15.99

0.10 Present 1.376 4.999 5.540 12.00 12.12 13.85

Ref. [9] 1.376 4.999 5.540 12.00 12.12 13.85

0.15 Present 1.339 4.529 5.066 10.34 10.43 11.77

Ref. [9] 1.339 4.529 5.066 10.34 10.43 11.77

0.20 Present 1.295 4.051 4.586 8.802 9.060 10.06

Ref. [9] 1.295 4.051 4.586 8.802 9.060 10.06

ðk ¼ 0:823; n ¼ 0:3Þ:
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Fig. 2. Geometric sizes and mesh for a C–F–F triangular plate.
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polynomials as shape functions are in excellent agreement with those in Ref. [9]. So the
trapezoidal p-version elements with analytic quadrature can be applied to the vibration analysis of
plates with arbitrary polygonal shapes without numerical integration.
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